
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver. IV (Mar - Apr.2015), PP 01-10
www.iosrjournals.org

DOI: 10.9790/2834-10240110 www.iosrjournals.org 1 | Page

Serial Communication Protocol Conversion and Circular Buffer

Implementation in FPGA using Verilog

Madhulika Sharma
1
, Puneet Maheshwari

2
, Pravin Fatnani

2
, Preet Jain

1

1(Department of Electronics and Communication Engineering, Shri Vaishnav Institute of Technology and

Science, Indore, India)
2(Accelerator Control Section, Raja Ramanna Centre for Advanced Technology, Indore, India)

Abstract: Raja Ramanna Centre for Advanced Technology (RRCAT) has two synchrotron radiation sources,
Indus-1 and Indus-2. Microtron is the common injector to both the machines. A new, FPGA based, control

system architecture is planned in which it supervises and monitors different subsystems present for the

operation of Microtron with the help of Equipment Control Modules (ECMs). At present some subsystems

communicate with operator console directly over RS232 interface such as the ‘Tesla Meter’ and the

‘Temperature Scanner’. For modularity, those subsystems must be brought over RS485 interface and with

unified pre-defined custom protocol for communication. In this paper monitoring of the Tesla Meter is

proposed. An ECM communicates with Tesla Meter over RS32 interface and with an operator console over

RS485 interface. Digital logic is designed in Verilog HDL and implemented in FPGA for RS232 and RS485

communication controllers, respectively. A protocol conversion unit between Tesla Meter and ECM is also
implemented. For more feature, there is a need to capture data and store it for offline data analysis. Therefore,

a circular buffer is also designed and simulated to review the history data from the ECM. The work has been

completed using ModelSim XE and Xilinx ISE 8.2i softwares.

Keywords: Buffer, FPGA, Protocol Conversion, RS232, RS485, Serial Communication

I. Introduction
In RRCAT, there is an injector “Microtron” which sends electron pulses to the Booster. In the new

control system architecture for the microtron, ECMs are used to supervise and monitor different sub-systems of

the Microtron. ECM communicates with the operator console over RS485 interface. The communication is done

in a custom predefined protocol. The ECM needs to be interfaced with various subsystems. All the subsystems
do not have the same interface and some of them communicate over RS232 serial interface directly with

operator console. “Tesla Meter” is one such subsystem (Fig. 1). For modularity, it is necessary to bring all

subsystems over RS485 interface therefore it is required to design a logic to communicate over RS232 & RS485

with their respective protocols and sent data from Tesla Meter to operator console over RS485 interface (Fig. 2).

The operator console may send a „history data‟ request to ECM for offline analysis and the ECM must

respond to this request in correct way. Therefore, a module is designed to have facility to write a data into

internal memory and read & send the data as and when required by the operator console in a proper format.

Fig. 1: Communication between Tesla Meter and Operator Console on RS232

Fig. 2: Communication between Tesla Meter and Operator Console on RS485

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 2 | Page

II. Communication Protocol
2.1 Protocol for Tesla Meter

Tesla Meter receives a single character „F‟ as a command and transmits „Magnetic field data‟ as

response. The ECM transmits 'F' and receives „F D0D1D2D3D4D5D6D7T‟, Dn represents nth character.

2.2 Protocol for Operator Console

Protocol for the communication between ECM and Operator Console is designed in the form of

Command –Acknowledge-Response frames. The ECM receives Command frame and transmits

Acknowledgement and Response frames in a predefined format as shown in Fig. 3, 4 and 5. The

acknowledgement can be positive or negative depending upon the checksum in the Command frame.

Fig. 3: Command Frame

Fig. 4: Acknowledgement Frame

Fig. 5: Response Frame

III. Controller and Conversion Unit
For the two serial communication interfaces the design is divided into three modules:

1. Controller for communication over RS232.

2. Controller for communication over RS485.

3. Inter protocol conversion unit
Other than the protocol conversion unit both the controllers have one transmitter and one receiver

control logic. The modules communicate at the baud rate of 19.2 kbps.

3.1 RS232 Transmitter

RS232 Transmitter transmits „F‟ every tens of milliseconds to the Tesla Meter. A counter is

implemented to define delays between two „F‟ characters. An internal register is used to store „F‟ and shift

registers to transmit „F‟.

Fig. 6: Flow chart of RS232 Transmitter

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 3 | Page

3.2 RS232 Receiver

RS232 Receiver receives the serial data from the Tesla Meter. The data consists of 11 characters which

are received one by one. A character reception is initiated by the bit transition from logic „1‟ to „0‟ on idle line
(logic „1‟). This logic „0‟ is a start bit which is sampled in the mid of the bit duration to validate its logic states.

On validation the next 8 bits from LSB to MSB are stored in an internal register followed by a stop bit at logic

„1‟. All the data bits are sampled at the mid of the bit duration. On receiving the correct stop bit, a „Character

Valid‟ signal is generated otherwise the character is discarded. The procedure is repeated for complete data from

the Tesla Meter and whole data is stored in an internal register. On storing the data, a „data valid‟ signal is

generated which is used by the protocol conversion unit to move from one unit to another.

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 4 | Page

Fig. 7: Flow Chart of RS232 Receiver

3.3 RS485 Receiver

On receiving the characters in the Command frame between Start Delimiter ($) and End Delimiter (*),
the ASCII equivalent of HEX character is converted into the corresponding HEX value. We validate the start of

frame with Start Delimiter '$' and terminate the reception on getting End Delimiter (*). The storage is done on

the verification of the destination address of the received frame. Frame integrity is done by checksum

calculation which is last 4 nibbles of sum of all the data values between „$‟ and „*‟ in hex format. The

„Command type‟ value is also extracted from the command frame for the RS485 Transmitter. This all is done

with the synchronization on baud rate clock generated inside the design.

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 5 | Page

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 6 | Page

Fig. 8: Flow Chart of RS485 Receiver

3.4 RS485 Transmitter

RS485 Transmitter has two important signals, the „data enable‟ and „Serial data out‟ signals. The

RS485 is a multi-drop interface in which many slaves can communicate with each other over a single bus. All

slaves can receive data simultaneously but only one slave can transmit data and all other must drive their

transmitter output in high impedance state. A „data enable‟ is generated within the module which is used to

enable different driver ICs whenever ECM is required to send the data over RS485 interface. An

Acknowledgement frame is sent when Command frame received is either correct or incorrect and a Response

frame is sent when Command frame received is correct. The Acknowledgement and Response frames are stored

in an internal register array. The Acknowledgement frame consists of various fields in which the address of the

source and destination, type of command and type of acknowledgement are given. The Response frame contains

address of the source and destination along with data from Tesla Meter and subsystem‟s status information.

Fig. 9: Flow Chart of RS485 Transmitter

4. RS232 to RS485 Protocol Converter

The Protocol Converter is fed by the RS232 Controller which inputs the Magnetic Field value. The

value is written into the temporary buffer of RS485 transmitter continuously till transmission from the RS485

Transmitter is not active.

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 7 | Page

Fig. 10: Flow Chart of RS232 to RS485 Protocol Converter

5. Circular Buffer
A circular buffer is defined as a data structure which has a fixed-size, single buffer connected end-to-

end. If the buffer is filled then the new data is written from the beginning and the old value has been

overwritten.

A circular buffer of a LIFO type is designed in which a clock of few tens of milliseconds is used to

write the data. The clock time period and number of locations decide the duration of data storage. On the

positive edge of the clock the data is written and on the negative edge of the clock the data is read. The control

of Read or Write operation is done by the generation of the read and write signal internally. Whenever Operator

Console sends a read data command, a read signal is generated which reads the whole buffer starting from the

current data location to last. Once „read‟ is complete, the buffer goes into write state as shown in the simulation

waveform (Fig. 16).

Fig. 11: Flow Chart of Circular Buffer

IV. Results
Table 1: Theoretical, Software Simulation and Practical Results

 Theoretical Value

(duration)

Post Route

Simulation Value

(duration)

Practical Value

(duration)

Appearance of ASCII 'F' 26.70ms 26.70ms 26.40ms

Acknowledgement Frame of 240 bits 12.50ms 12.57ms 12.56ms

Response Frame of 280 bits 14.58ms 14.76ms 14.64ms

Acknowledgement &Response Frame of 520 bits 27.08ms 28.53ms 29.12ms

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 8 | Page

The Post route simulation waveforms are given in Fig. 12 to 16:

Fig. 12: Appearance of ASCII 'F' in every 26.70ms

Fig. 13: Acknowledgement Frame transmits in 12.57ms

Fig. 14: Response Frame transmits in 14.76ms

Fig. 15: Acknowledgement Frame followed by Response Frame in 28.53ms.

Fig. 16: Functional simulation of Circular Buffer

The Oscilloscope waveforms are given in Fig. 17 to 20.

Fig. 17: Appearance of ASCII 'F' in every 26.40ms

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 9 | Page

Fig. 18: Acknowledgement Frame transmits in 12.56ms

Fig. 19: Response Frame transmits in 14.64ms

Fig. 20: Acknowledgement Frame followed by Response Frame in 29.12ms

Analysis of the results is done by the comparison of theoretical, simulated and actual values. The

Table 1 shows the various numbers with some differences. The reason for the variation between theoretical and
simulated values is due to difference in the baud rate clock timings. The theoretical value of the Baud Clock is

19.20 kHz and simulation value is 19.17 kHz so that the duration of 1 bit of data would be 52.083µs and

52.160µs respectively. Other reasons can be propagation delays and measurement error. The actual results are

measured with time base in milliseconds. The measurement of microseconds are done with time base of few

milliseconds which itself can cause some deviation of results from simulated values. Although these deviations

are observed, the behaviour and functionality of the communication is not affected. The designed system is

successful in all the aspects of implementation

V. Conclusion
RS232 & RS485 controllers are designed, simulated and implemented in FPGA with the help of

Verilog HDL. The digital design for controllers is synthesized in terms of logic resource of the Spartan FPGA.

The modules are designed to work at a baud rate of 19.2 kbps. This is verified through implementation and

controllers are working successfully with Tesla Meter and Operator Console. It is noted that for complete

communication at RS485 interface, it takes around 60 ms from reception of command to the transmission of

response. This implies that data from 15 subsystems can be updated at this baud rate in 1s. Thus it may be

concluded that this protocol conversion is useful for Microtron like systems where data update rate is of the

order of a second and number of sub-systems are less than 15. The circular buffer is also designed and simulated

using ModelSim XE & Xilinx ISE 8.2i. The implementation part will be completed in the near future.

Serial Communication Protocol Conversion and Circular Buffer Implementation in FPGA ….

DOI: 10.9790/2834-10240110 www.iosrjournals.org 10 | Page

Reference
[1]. Puneet Maheshwari, Yogendra Sheth, Pravin Fatnani, C.P. Navathe. RRCAT, FPGA based Control System Hardware for

Microtron, DAE-BRNS Indian Particle Accelerator Conference, ©2013, Kolkata, West Bengal, India.

[2]. Jan Axelson, Serial port Complete COM ports, USB Virtual COM Ports, and Ports for Embedded Systems (Lakeview Research

LLC, 5310 Chinook Ln., Madison WI 53704, 2
nd

 edition, ©2007, Stockton, California).

[3]. Clive “Max” Maxfield, FPGAs World Class Designs (Newnes, 1
st
 edition, ©2009, Burlington, United States of America).

[4]. Samir Palnitkar, Verilog HDL A guide to Digital Design and Synthesis (SunSoft Press, 2
nd

 edition, ©2003, New Delhi, India).

[5]. Pong P. Chu, FPGA Pototyping by Verilog Examples Xilinx Spartan
TM

-3 Version (Wiley A John Wiley & Sons, Inc., Publication,

1
st
 edition, ©2008, Hoboken, New Jersey, United States of America).

[6]. M. Morris Mano, Michael D. Ciletti, Digital Design with an Introduction to the Verilog HDL (Pearson, 5
th

 edition, ©2013, New

Jersey, United States of America).

[7]. http://www.asciitable.com/

